Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Braz. j. med. biol. res ; 54(1): e10465, 2021. tab
Article in English | LILACS | ID: biblio-1153508

ABSTRACT

Intrauterine growth restriction (IUGR) is related to a higher risk of neonatal mortality, minor cognitive deficit, metabolic syndrome, and cardiovascular disease in adulthood. In previous studies, genetic variants in the FTO (fat mass and obesity-associated) and PPARγ (peroxisome proliferator-activated receptor-gamma) genes have been associated with metabolic disease, body mass index, and obesity among other outcomes. We studied the association of selected FTO (rs1421085, rs55682395, rs17817449, rs8043757, rs9926289, and rs9939609) and PPARγ (rs10865710, rs17036263, rs35206526, rs1801282, rs28763894, rs41516544, rs62243567, rs3856806, and rs1805151) single-nucleotide polymorphisms (SNPs) with IUGR, through a case-control study in a cohort of live births that occurred from June 1978 to May 1979 in a Brazilian city. We selected 280 IUGR cases and 256 controls for analysis. Logistic regression was used to jointly analyze the SNPs as well as factors such as maternal smoking, age, and schooling. We found that the PPARγ rs41516544 increased the risk of IUGR for male offspring (OR 27.83, 95%CI 3.65-212.32) as well as for female offspring (OR=8.94, 95%CI: 1.96-40.88). The FTO rs9939609 TA genotype resulted in a reduced susceptibility to IUGR for male offspring only (OR=0.47, 95%CI: 0.26-0.86). In conclusion, we demonstrated that PPARγ SNP had a positive effect and FTO SNP had a negative effect on IUGR occurrence, and these effects were gender-specific.


Subject(s)
Humans , Male , Female , Adult , PPAR gamma/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Brazil/epidemiology , Body Mass Index , Case-Control Studies , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , Fetal Growth Retardation/genetics , Genotype
2.
Genet. mol. res. (Online) ; 7(2): 314-325, 2008. tab, ilus
Article in English | LILACS | ID: lil-641008

ABSTRACT

We explored the potential of fusion of hepatic locus control region 1 (HCR-1) with HCR-2 to express B-domain-deleted human factor VIII (FVIII) in four cell lines. B-domain-deleted human FVIII expression was controlled by HCR-1/HCR-2, followed by liver specific and ubiquitous promoters. Chimera enhancer HCR-1/HCR-2, followed by cytomegalovirus (CMV) promoter, gave 2-fold more FVIII expression in all cell lines (105.6 ± 2.8 for Hek-293, 68.8 ± 3.8 for HepG2, 34.8 ± 1.3 for CHO, and 27.2 ± 1.6 ng-mL-1-106 cells-1 for L.N.) when compared to the vector with CMV alone (54.8 ± 3.3 for Hek-293, 32.4 ± 1.2 for HepG2, 18.6 ± 1.1 for CHO, and 10.1 ± 1.7 ng-mL-1-106 cells-1 for L.N.). Elongation factor 1-α gene and human CMV promoters were more efficient than the promoters from the human α-1-antitrypsin gene, and fviii was less efficient in hepatic cell lines. HCR-1/HCR-2, followed by strong promoters, increases FVIII expression in vitro. Our results underscore the importance of cis sequences for enhancing in vitro FVIII expression; this may be helpful for designing new strategies to improve heterologous expression systems.


Subject(s)
Humans , Animals , Enhancer Elements, Genetic/genetics , Factor VIII/genetics , Promoter Regions, Genetic/genetics , Genetic Vectors/genetics , Cell Line , Cell Line, Tumor , CHO Cells , Cricetinae , Cricetulus , Cytomegalovirus/genetics , Factor VIII/metabolism , Immunohistochemistry , Microscopy, Fluorescence , Plasmids , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction
3.
Braz. j. med. biol. res ; 40(1): 57-67, Jan. 2007. ilus, tab
Article in English | LILACS | ID: lil-439668

ABSTRACT

Bone marrow is a heterogeneous cell population which includes hematopoietic and mesenchymal progenitor cells. Dysregulated hematopoiesis occurs in chronic myelogenous leukemia (CML), being caused at least in part by abnormalities in the hematopoietic progenitors. However, the role of mesenchymal stem cells (MSCs) in CML has not been well characterized. The objectives of the present study were to observe the biological characteristics of MSCs from CML patients and to determine if MSCs originate in part from donors in CML patients after bone marrow transplantation (BMT). We analyzed MSCs from 5 untreated patients and from 3 CML patients after sex-mismatched allogeneic BMT. Flow cytometry analysis revealed the typical MSC phenotype and in vitro assays showed ability to differentiate into adipocytes and osteoblasts. Moreover, although some RT-PCR data were contradictory, combined fluorescence in situ hybridization analysis showed that MSCs from CML patients do not express the bcr-abl gene. Regarding MSCs of donor origin, although it is possible to detect Y target sequence by nested PCR, the low frequency (0.14 and 0.34 percent) of XY cells in 2 MSC CML patients by fluorescence in situ hybridization analysis suggests the presence of contaminant hematopoietic cells and the absence of host-derived MSCs in CML patients. Therefore, we conclude that MSCs from CML patients express the typical MSC phenotype, can differentiate into osteogenic and adipogenic lineages and do not express the bcr-abl gene. MSCs cannot be found in recipients 12 to 20 months after BMT. The influence of MSCs on the dysregulation of hematopoiesis in CML patients deserves further investigation.


Subject(s)
Humans , Male , Female , Adolescent , Adult , Middle Aged , Bone Marrow Transplantation , Fusion Proteins, bcr-abl/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/surgery , Mesenchymal Stem Cells , Transplantation Conditioning , Chimera , Fusion Proteins, bcr-abl/analysis , Hematopoiesis , In Situ Hybridization, Fluorescence , Mesenchymal Stem Cells , Phenotype , Reverse Transcriptase Polymerase Chain Reaction , Time Factors
4.
Braz. j. med. biol. res ; 25(8): 777-80, 1992. tab, ilus
Article in English | LILACS | ID: lil-113568

ABSTRACT

A recombinant clone carrying a 2-kb fragment was isolated from a mini-library of the B10 DNA puff of Bradysia hygida. This fragment was amplified in the salivary gland during the period of DNA puff formation. Amplification started when DNA puff anlage was formed and continued to increase, reaching a maximum of abouth 10-fold 28 h later. Northern blot hybridization experiments showed that this 2-kb fragment was complementary to two RNA species of about 1.3 kb and 1.1 kb, which are developmentally regulated in the salivary gland. Maximum amounts of these messages were present when the B10 puff is fully expanded


Subject(s)
Cloning, Molecular , DNA , Drosophila , Gene Amplification , Salivary Glands , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL